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Abstract—The main objective of this project is to 
implement a full duplex SPI (serial peripheral interfacing 
system) with low complexity and high security algorithms. 
High security is achieved by encoding the data with S.E.A 
(scalable encryption algorithms) along with that, error 
checking capability is also provided by adding even parity. 
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I. INTRODUCTION 
Today at the low end of the communication protocols 
we find two world wide protocols: I2C, SPI both 
protocols are well suited for communications between 
integrated circuits for low/medium data transfer speed 
with on-board peripherals. The two protocols coexist in 
modern digital electronic systems, and they probably 
will continue to complete in the future, as they both I2C 
and SPI are actually quite complimentary for this kind 
of communication. SPI plays virtual role in way of 
communications. But no security is provided and no 
error checking is provided for that communication 
protocol. We need such protocol for efficient and 
secured communication. 
The Serial Peripheral Interface Bus or SPI bus is a 
synchronous serial data link standard named by 
Motorola that operates in full duplex mode. Devices 
communicate in master/slave mode where the master 
device initiates the data frame. Multiple slave devices 
are allowed with individual slave select (chip select) 
lines. Sometimes SPI is called a "four-wire" serial bus. 

 
II.SPI COMMUNICATION 

Four logic signals are necessary to connect 2 or more 
devices with SPI: 
- SCLK- Serial Clock (output from master) 
- MOSI / SIMO - Master Out Slave In (output from 
master). 
- MISO / SOMI - Master In Slave Out (output from 
slave) 
- SS - Slave Select (active low, output from master). 
The SPI bus can operate with a single master device and 
with one or more slave devices. If a single slave device 
is used, the SS pin may be fixed to logic low if the slave 
permits it. Some slaves require the falling edge (high to 
low transition) of the chip select to initiate an action 
such as the Maxim MAX1242 ADC, which starts 
conversion on said transition. With multiple slave 
devices, an independent SS signal is required from the 
master for each slave device. Most slave devices have 
tri-state outputs so their MISO signal becomes high 
impedance ("disconnected") when the device is not 
selected. Devices without tri-state outputs can't share 

SPI bus segments with other devices; only one such 
slave could talk to the master, and only its chip select 
could be activated. 

 
 

Fig. 1. The SPI Bus system with 1 master device and 
with 3 slave devices 

Form the above diagram, we can justify that, data can be 
passed from one master to multiple slaves depends on 
activation of slave selection signal. Full duplex 

communication is in existence till now. 
If there is only one slave device then the SS pin on the 
slave device can be fixed to logic low state. If there is 2 
or more slave devices in the system, then an 
independent SS signal is required from the master 
device for each slave device. When the master device 
wants to start a communication it has to set the clocks, 
that is less than or equal to the slave device's maximum 
frequency (most commonly from 1 to a few MHz). SPI 
communication is a full duplex communication, the 
master device sends a byte to the desired slave device in 
the meantime it receives a byte from the slave device. 
Transmissions may involve any number of clock cycles. 
When there are no more data to be transmitted, the 
master device stops toggling its clock. Normally, it then 
deselects the slave device. Every slave device on the bus 
that hasn't been activated using its Slave Select line 
must disregard the input clock and MOSI signals, and 
may not drive MISO. The master device selects only 
one slave at a time. 
In addition to setting the clock frequency, the master 
must also configure the clock polarity and phase with 
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respect to the data. Free scale’s SPI Block Guide names 
these two options as CPOL and CPHA respectively, and 
most vendors have adopted that convention. 
The timing diagram is shown to the right. The timing is 
further described below and applies to both the master 
and the slave device. 
-At CPOL=0 the base value of the clock is zero. 
For CPHA=0, data are captured on the clock's rising 
edge (low to high transition) and data are propagated on 
a falling edge (high to low clock transition). For 
CPHA=1, data are captured on the clock's falling edge 
and data are propagated on a rising edge. 
-At CPOL=1 the base value of the clock is one 
(inversion of CPOL=0)  
For CPHA=0, data are captured on clock's falling edge 
and data are propagated on a rising edge. For CPHA=1, 
data are captured on clock's rising edge and data are 
propagated on a falling edge. That is, CPHA=0 means 
sample on the leading (first) clock edge, while CPHA=1 
means sample on the trailing (second) clock edge, 
regardless of whether that clock edge is rising or falling. 
Note that with CPHA=0, the data must be stable for a 
half cycle before the first clock cycle. For all CPOL and 
CPHA modes, the initial clock value must be stable 
before the chip select line goes active. Also, note that 
"data is read" in this document more typically means 
"data may be read". The MOSI and MISO signals are 
usually stable (at their reception points) for the half 
cycle until the next clock transition. SPI master and 
slave devices may well sample data at different points in 
that half cycle. This adds more flexibility to the 
communication channel between the master and slave. 
 

 
Fig.2. Clock dependencies from CPHA and CPOL 

 
Fig. 3. CPOL and CPHA setup table 

 
Some devices even have minor variances from the 
CPOL/CPHA modes described above. Sending data 
from slave to master may use the opposite clock edge as 
master to slave. Devices often require extra clock idle 
time before the first clock or after the last one, or 
between a command and its response. Some devices 

have two clocks, one to "capture" or "display" data, and 
another to clock it into the device. Many of these 
"capture clocks" run from the chip select line. 
Some devices require an additional flow control signal 
from slave to master, indicating when data are ready. 
This leads to a "five wire" protocol instead of the usual 
four. Such a "ready" or "enable" signal is often active-
low, and needs to be enabled at key points such as after 
commands or between words. Without such a signal, 
data transfer rates may need to be slowed down 
significantly, or protocols may need to have "dummy 
bytes" inserted, to accommodate the worst case for the 
slave response time. Examples include initiating an 
ADC conversion, addressing the right page of flash 
memory, and processing enough of a command that 
device firmware can load the first word of the response. 
(Many SPI masters don't support that signal directly, 
and instead rely on fixed delays.) 
Many SPI chips only support messages that are 
multiples of 8 bits. Such chips cannot interoperate with 
the JTAG or SGPIO protocols, or any other protocol 
that requires messages that are not multiples of 8 bits. 
 

III.PROPOSED MODEL 

 
Fig.4.Low Complex and High Secure SPI 

Communication 
 
In the above block diagram, Full-duplex communication 
is established between single master and multi slave 
devices with more security. For security purpose, S.E.A 
(Scalable Encryption algorithm) is utilized. Error 
checking is also main criteria while sending data from 
one point to another. Here, even parity generations are 
used for error checking purpose.    
A. Error detection 
In information theory and coding theory with 
applications in computer science and telecommunication, 
error detection and correction or error control are 
techniques that enable reliable delivery of digital data 
over unreliable communication channels. Many 
communication channels are subject to channel noise, 
and thus errors may be introduced during transmission 
from the source to a receiver. Error detection techniques 
allow detecting such errors, while error correction 
enables reconstruction of the original data. The general 
definitions of the terms are as follows: 
Error detection is the detection of errors caused by noise 
or other impairments during transmission from the 
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transmitter to the receiver. Error correction is the 
detection of errors and reconstruction of the original, 
error-free data.  
Error correction may generally be realized in two 
different ways: 
Automatic Repeat Request (ARQ) (sometimes also 
referred to as backward error correction): This is an 
error control technique whereby an error detection 
scheme is combined with requests for retransmission of 
erroneous data. Every block of data received is checked 
using the error detection code used, and if the check 
fails, retransmission of the data is requested this may be 
done repeatedly, until the data can be verified.  
Forward Error Correction (FEC): The sender encodes 
the data using an error-correcting code (ECC) prior to 
transmission. The additional information (redundancy) 
added by the code is used by the receiver to recover the 
original data. In general, the reconstructed data is what 
is deemed the "most likely" original data.  
B. Error Detection Schemes 
Error detection is most commonly realized using a 
suitable hash function (or checksum algorithm). A hash 
function adds a fixed-length tag to a message, which 
enables receivers to verify the delivered message by 
recomputing the tag and comparing it with the one 
provided. There exists a vast variety of different hash 
function designs. However, some are of particularly 
widespread use because of either their simplicity or their 
suitability for detecting certain kinds of errors (e.g., the 
cyclic redundancy check's performance in detecting 
burst errors. 
Random-error-correcting codes based on minimum 
distance coding can provide a suitable alternative to 
hash functions when a strict guarantee on the minimum 
number of errors to be detected is desired. Repetition 
codes, described below, are special cases of error-
correcting codes: although rather inefficient, they find 
applications for both error correction and detection due 
to their simplicity. 
C. Repetition codes 
A repetition code is a coding scheme that repeats the 
bits across a channel to achieve error-free 
communication. Given a stream of data to be 
transmitted, the data is divided into blocks of bits. Each 
block is transmitted some predetermined number of 
times. For example, to send the bit pattern "1011", the 
four-bit block can be repeated three times, thus 
producing "1011 1011 1011". However, if this twelve-
bit pattern was received as "1010 1011 1011" – where 
the first block is unlike the other two – it can be 
determined that an error has occurred. 
Repetition codes are not very efficient, and can be 
susceptible to problems if the error occurs in exactly the 
same place for each group (e.g., "1010 1010 1010" in 
the previous example would be detected as correct). The 
advantage of repetition codes is that they are extremely 
simple, and are in fact used in some transmissions of 
numbers stations.  
D. Parity Generator 
A parity bit is a bit that is added to ensure that the 
number of bits with the value one in a set of bits is even 
or odd. Parity bits are used as the simplest form of error 
detecting code. 

There are two variants of parity bits: even parity bit and 
odd parity bit. When using even parity, the parity bit is 
set to 0 if the number of ones in a given set of bits (not 
including the parity bit) is even, making the entire set of 
bits (including the parity bit) even. When using odd 
parity, the parity bit is set to 0 if the number of ones in a 
given set of bits (not including the parity bit) is odd, 
keeping the entire set of bits (including the parity bit) 
odd. Even parity is a special case of a cyclic redundancy 
check (CRC), where the 1-bit CRC is generated by the 
polynomial x+1. If the parity bit is present but not used, 
it may be referred to as mark parity (when the parity bit 
is always 1) or space parity (the bit is always 0). 
  

7 bits of data 
(number of 1s) 

8 bits including parity 

Even odd 

0000000 (0) 00000000 10000000 

1010001 (3) 11010001 01010001 

1101001 (4) 01101001 11101001 

1111111 (7) 11111111 01111111 

 
Parity bits are extra signals which are added to a data 
word to enable error checking. There are two types of 
Parity even and odd. An even parity generator will 
produce a logic 1 at its output if the data word contains 
an odd number of ones. If the data word contains an 
even number of one’s then the output of the parity 
generator will be low. By concatenating the Parity bit to 
the data word, a word will be formed which always has 
an even number of one’s i.e. has even parity. 
E. Encryption 
Encryption is the conversion of data into a form, called 
a cipher text that cannot be easily understood by 
unauthorized people. Decryption is the process of 
converting encrypted data back into its original form, so 
it can be understood.  The use of encryption/decryption 
is as old as the art of communication. In wartime, a 
cipher, often incorrectly called a code, can be employed 
to keep the enemy from obtaining the contents of 
transmissions. (Technically, a code is a means of 
representing a signal without the intent of keeping it 
secret; examples are Morse code and ASCII.) Simple 
ciphers include the substitution of letters for numbers, 
the rotation of letters in the alphabet, and the 
"scrambling" of voice signals by inverting the sideband 
frequencies. More complex ciphers work according to 
sophisticated computer algorithms that rearrange the 
data bits in digital signals. In order to easily recover the 
contents of an encrypted signal, the correct decryption 
key is required. The key is an algorithm that undoes the 
work of the encryption algorithm. Alternatively, a 
computer can be used in an attempt to break the cipher. 
The more complex the encryption algorithm, the more 
difficult it becomes to eavesdrop on the communications 
without access to the key. 
Encryption/decryption is especially important in 
wireless communications. This is because wireless 
circuits are easier to tap than their hard-wired 
counterparts. Nevertheless, encryption/decryption is a 
good idea when carrying out any kind of sensitive 
transaction, such as a credit card purchase online, or the 
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discussion of a company secret between different 
departments in the organization. The stronger the cipher 
that is, the harder it is for unauthorized people to break 
it the better, in general. However, as the strength of 
encryption/decryption increases, so does the cost. 
F. Decryption 
Encryption is the initial message prepared by the sender 
is written as plaintext, which the sender converts into 
cipher text before the message is transmitted. The 
process of converting plaintext into cipher text is called 
encryption. The encryption process requires an 
encryption algorithm and a key. The process of 
recovering plaintext from cipher text is called 
decryption.  
In classical cryptography, the key is exchanged secretly 
between sender and receiver over secured 
communication, or through a trusted intermediary. The 
accepted view among professional cryptographers it that 
the encryption algorithm should be published, whereas 
the key must be kept secret. The purpose of publishing 
the encryption algorithm is to place it before the 
academic cryptography community, which will discover 
its flaws. Better that the flaws in the encryption 
algorithm be first discovered in academia than when the 
message is secretly decoded by the attacker.  
Sample encryption calculation is the both the initial 
plaintext and the resulting cipher text may contain 
words or numbers or both, but is ultimately convertible 
into a sequence of numerals, which can be processed by 
computer and distributed through public 
communications, including the internet. For simplicity 
of discussion, we can speak of an initial plaintext 
expressed as a sequence of decimal numerals. For 
example, let the letters of the alphabet be represented as 
two-digit numbers from a=00 to z=25 (ignore blank-
spaces for now). Then the plaintext for the quick brown 
fox becomes numeralized as 
19070416200802100117142213051423, as follows:       
       Thequickbrownfox 
       t  h  e  q  u  i  c  k  b  r  o  w  n  f  o  x 
      19 07 04 16 20 08 02 10 01 17 14 22 13 05 14 23 
 
analogously, we may form a simple key consisting, say, 
of the consecutive letters of the alphabet: 
abcdefghijklmnopqrstuvwxyzabcd....  
  Abcdefghijklmnopqrs 
  a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u.... 
 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 
18 19 20.... 
 
A simple encryption algorithm might consist of adding 
the plaintext to the encryption-key, using modulo-26 
arithmetic. That is, if the sum of any two numbers 
obtained by ordinary addition is 26 or greater, then you 
subtract 26 from the ordinary sum to obtain the modulo-
26 sum. Thus, 05+12=17 by both ordinary and modulo-
26 arithmetic, but 15+12=27 by ordinary arithmetic but 
15+12=01 by modulo-26 arithmetic. Hence, the cipher 
text for thequickbrownfox is 
19080619241308170901240725180212, as follows: 
      19 07 04 16 20 08 02 10 01 17 14 22 13 05 14 23 
 (+)  00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15   
(modulo-26) 

_____________________________________________ 
      19 08 06 19 24 13 08 17 09 01 24 07 25 18 02 12 
The cipher text may then be decrypted by the receiver, 
using the decryption-key 
azyxwvutsrqponmlkjihgfedcbazyx... and modulo-26 
arithmetic, as follows: 
      19 08 06 19 24 13 08 17 09 01 24 07 25 18 02 12 
 (+)  00 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 
(modulo-26) 
_____________________________________________ 
      19 07 04 16 20 08 02 10 01 17 14 22 13 05 14 23 
 
It is entirely reverse process to the encryption. Inputs to 
the decryption block are received data along with key. 
Key should be same as in tx block. Then only cipher 
text will be converted in to original plane text. 
G. Parity Degeneration 
Error detection using parity compensation in binary 
coded decimal (BCD) and densely packed decimal 
(DPD) conversions, including a computer program 
product having a tangible storage medium readable by a 
processing circuit and storing instructions for execution 
by the processing circuit for performing a method. The 
method includes receiving formatted decimal data in a 
first format, the formatted decimal data consisting of a 
DPD format data or a BCD format data. One or more 
first parity bits are generated by converting the received 
data into a second format of the formatted decimal data, 
and by determining the parity of the data in the second 
format. One or more second parity bits are generated 
directly from the received data. An error flag is set to 
indicate an error in the data in the second format in 
response to the first parity bits not being equal to the 
second parity bits.  
H. Parity check  
This is the simplest scheme of error detection. In this 
scheme a single parity bit is introduced. This parity bit 
is appended at the end of the block of data in such a way 
that the block of data contains either even (even parity) 
or odd (odd parity) number of ones. for example in case 
of even parity consider a block of data to be sent is 
10100100 this is a seven bit data a new parity bit will be 
appended at the end so that the number of one’s in the 
data become even 101001001. Now this data is sent 
across the transmission channel and if suppose error 
occurs during the transmission and the third bit in the 
block become zero (100001001) now this will be 
received by the receiver and will detect an error. 
However if two or more bits are inverted in such a way 
that the number of one’s remain even (e.g. 11001001) 
then the error will remain undetected. same is the case 
with odd parity in which a parity bit is introduced in 
such a way the resulting block of data contain odd 
numbers of ones. Typically, even parity is used for 
synchronous transmission and odd parity for 
asynchronous transmission. This method in not 
foolproof, noise impulses are often long and destroy 
more than one bit of data.  
The parity bit is only an error detection code. The 
concept of parity bit has been later on developed and 
error detection and correction code has been developed 
using more than one parity bits. One such code is 
hamming error correcting code.  
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Hamming error-correcting code: this code was devised 
by Richard hamming at bell laboratories. Let’s 
understand this codes with the help of Venn diagrams, 
let’s consider 4 bit data. Figure below shows the Venn 
diagrams with filled in data bits, which are filled in the 
intersecting inner compartments. the next step is to fill 
in the parity bits for these four data bit the principle here 
is that we add the parity bits such that the total number 
of l's in each circle is even (even parity) 
please note that each of the circle have even number of 
l's.  
After the data transfer, let us say, we encounter a 
situation where one of the data bit is changed from 1 to 
0. Thus, an error has occurred. How will this error be 
detected and rectified? 
The parity bit of the two circles are indicating error of 
one bit, since two circles are indicating errors, therefore, 
the error lies at the intersection of these two circle. So, 
we have not only recognized the error but also its source. 
Thus, in this case by changing the bit in error, from 0 to 
1 we can easily rectify the error. Now let us discuss a 
scheme for error correction and detection of single bit 
errors in 8 bit words. The first question in this respect is: 
what should be the length of the code? The error 
detection is done by comparing the two input bit error 
detection and correction codes fed to the comparison 
logic bit by bit. Let us have a comparison logic which 
produce a 0 if the compared bits are same or else it 
produce a1. Therefore, if similar position bits are same 
then we get 0 at that bit position, but if they are different, 
that is this bit position may point to some error, then this 
particular bit position will be marked as 1. This way a 
match word called syndrome word is constructed. This 
syndrome word is i bit long, therefore, can represent 2i 
values or combinations. for example, a 4 bit syndrome 
word can represent 24=16 values which range from 0 to 
15 as:  
0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111 
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 
 
the value 0000 or 0 represent no error while the other 
values i.e..2i-1 (for 4 bits 24-1=15 that is from 1 to15) 
represent an error condition.  
The next step in this connection will be to arrange the 8 
bit word and its 4 bit error correction code in such a way 
that a particular value of the syndrome word specifies an 
error in a unique bit (which may be data or error 
detection code' ). The following arrangement of the 
(N+i) bits is suggested. 
Bit positions 12 11 10 9 8 7 6 5 4 3 2 1  
Data bits 8 7 6 5 4 3 2 1  
Correction bits 8 4 2 1 
Data bits and bit positions.  
The above arrangement is derived on the basis that: 
Syndrome Word zero implies no error. If syndrome 
word contains only one bit as 1 then it should be 
inferred that error has occurred only in the parity bits, 
therefore, no correction is needed in data. But how can 
we implement it? This can be implemented easily by 
assigning the check bits as 1st, 2nd, 4th, and 8th bit 
position. In case more than one bit in syndrome word 
are set as 1 then the numerical value of the syndrome 
word should determine the bit position which is in error. 

The arrangement shown in figure above has an added 
advantage that is each data bit position can be calculated 
as a function of correction bit positions. Please note, in 
case any one of the correction bit has changed during 
data transmission, that implies any one of the 1st or 2nd 
or 4th or 8th bit position data have altered, therefore, the 
syndrome bit will be 0001 if the data at first bit position 
has changed, 0010 if 2nd bit position has changed; or 
0100 if data at 4th bit position has changed, or 1000 if 
data at 8th bit position has changed. Thus, the proposed 
bit arrangement scheme of figure above satisfies the 
second assumption for the bit arrangement scheme. The 
next assumption in this regard is the value of syndrome 
word should indicate the bit position which is in error, 
that is, if there is error in bit position 3 it should change 
correction bits of bit position 1 and 2 and so on. Let us 
discuss how this can achieve. 
For example The SEC code for 8 bit word is of 4 bits 
 
Check bit l =Even parity of(1,1,1,1,1)=1 
Check bit 2 =Even parity of(1,0,1,0,1)=1 
Check bit 3 =Even parity of(1,0,1,0)=0 
Check bit 4 =Even parity of(1,0,1,0)=0 
 
Therefore, the 12 bit word to be transmitted is 
 
Bit Position 12 11 10 9 8 7 6 5 4 3 2 1 
Data Bits 8 7 6 5 4 3 2 1  
Check Bits 4 3 2 1 
Data to be transmitted 0 1 0 1 0 1 0 1 0 1 1 1 
Data Received 0 1 0 0 0 1 0 1 0 1 1 1 
Error in the 5th data bit 
Calculation of check bits of data received: 
 
Check bit 1 = Even parity of(l,1,1,0,1,)=0 
Check bit 2 = Even parity of(1,0,1,0,1,)=1 
Check bit 3 = Even parity of(1,0,1,0)=0 
Check bit 4 = Even parity of(0,0,1,0)=1 
 
Syndrome word =compare the received check bits to 
calculated checks bits Of received data 
= 0 0 1 1 Received check bits 
1 0 1 0 calculated check bits 
1 0 0 1 
Please note for syndrome word calculation if two check 
bits are same then the respective bit in syndrome word 
will be 0 if the two check bits are same then the bit in 
syndrome word will be1. Thus, syndrome word = 1001, 
which implies that 9th bit position in the received 12 bit 
information is in error. The 9th bit position corresponds 
to 5th data bit. Change this bit to 1 if it is 0 or 0 if it is 1. 
Since in the received data it is 0, therefore, change it to1. 
Hence, the data was (excluding check bits) received as 
01001011. The corrected data is 01011011 
the corrected data is same as the transmitted data.  
 

IV. SIMULATION RESULTS 
The SPI communication described above is designed 
using VHDL and simulated. The simulation results here 
shown are about the slave modules of  the protocol 
which is designed with  S.E.A (scalable encryption 
algorithms) along with that, error checking capability is 
also provided by adding even parity. 
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Fig.5. Simulation Results of  USART 

 

 
Fig.6. Simulation Results for LFSR 

 

 
Fig.7. Simulation Results for Tristate Buffers 

 
Here Fig 5, 6 and 7 shows the results of slaves in SPI 
communication protocol. Here the three slaves are 
USART, LFSR and tristate buffers. The three are having 
there own importance in this design. 
 

V.CONCLUSION 
Finally in this paper we design high speed and secured 
SPI Communication Protocol with Scalable Encryption 
Algorithm (SEA), along with error detection with even 
parity. Furthermore this Protocol can be applicable for 
different applications like SOC, CPU and DSP 
Processors. 
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